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Methods and research topics of the Soding lab

Computational metagenomics

* Fast & deep sequence searching
and clustering

* Protein-level assembly
* Large-scale binning & X-assembly
* Gene prediction

Protein function & structure
* Coevolution analysis

* Viral metagenomics (Virus-X)

* Functional module discovery
in massive metagenomic data

smart

algorith
par;ﬁ:ized Baygs!an (Post-) Transcriptional regulation
code statistical * Regulatory motif discovery

modeling

Systems medicine of complex
diseases

* Risc locus prediction
* Risk variant fine-mapping

* Discovery of drug targets from
GWAS & eQTL data

* RNA-protein binding cooperat.
* PAR-CLIP data analysis
* NGS data analysis

Single-cell transcriptomics

* Reconstruction of cellular
lineage trees

* Denoising scRNA-seq data




Why are we interested in
transcriptional regulation?



Genetic causes of common diseases linked
to dysregulation of gene networks

(SNP = position in genome with variation in population)
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10,000 healthy people

2 90% of causal SNPs non-coding

These SNPs disrupt transcription factor binding sites and thereby
influence the expression of target genes



How is an organism encoded in its genome?

enhance
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Genomically inserted
4+6 enhancer with lacZ reporter

Genomes contain all information
for a single cell to develop into a
complex organism and to survive
and procreate

Genomes are molecular programs,
which are read by transcription
factors binding to specific DNA
sequences.

Transcription rates are the result of
complex molecular computations
at promoters and enhancers

We want to understand and predict
these molecular computations



Are we there yet?

(What | cannot create, | do not understand)
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Transcription factors missing?
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TF-TF interactions?

type enhancer

reconsituted 1
Weak binding sites missing?
o _ ~~~onsituted 2
Binding site strengths?
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We cannot reconstitute even best-studied enhancers with designed sequences

BJ Vincent, J Estrada & AH DePace, Integrative Biol. 2016



De-novo motif discovery: binding site motifs
for TFs enriched in set of sequences

motif
-
DNA -
- ChIP-seq —
« SELEX-seq — —

* Protein binding microarrays (PBMs)

* DNase-seq, FAIRE-seq, ATAC-seq: open chromatin
 CAGE, RACE: transcription start sites

* RNA-seq: co-expressed genes

* Hi-C, ChlA-PET: loops and 3D nuclear structure

RNA
* PAR-CLIP, ICLIP: RNAs bound by RNA-binding factors
« SELEX-seq: binding motifs
* RNA-seq: 3 ‘UTRs of co-expressed genes



Postion weight matrices (PWMs) assume
independence of nucleotides within site

But how important are correlations among
nucleotides in regulatory motifs?

Correlations between neighboring nucleotides:
+ Shape readout of DNA g

kihk minor groove width
+ Multiple (sequence-dependent) binding modes
» Variable spacers between half-sites

+ Complex combination of motifs at varying distances,
e.g. through multiple DNA binding domains, collaborative
binding etc.



Diversity and Complexity in DNA
Recognition by Transcription Factors

1,5%

Gwenael Badis,** Michael F. Berger,>>* Anthony A. Philippakis,®*'** Shaheynoor Talukder,
7

Andrew R. Gehrke,?* Savina A. Jaeger,?* Esther T. Chan,”* Genita Metzler,® Anastasia Vedenko,
Xiaoyu Chen, Hanna Kuznetsov,® Chi-Fong Wang,? David Coburn,® Daniel E. Newburger,?
Quaid Morris,*?1° Timothy R. Hughes,>*°+ Martha L. Bulyk®***'+

Quantitative analysis demonstrates
most transcription factors require

only simple models of specificity
E Y Zhao & G Stormo, Nature Biotech 29: 480 — 483 (2011).

Jury remains out on simple models
of transcription factor specificity
Q Morris, ML Bulyk, TR Hughes, Nature Biotech 29: 483 — 485 (2011).

Protein binding microarray



ANALYSIS

Evaluation of methods for modeling transcription factor
sequence specificity

Matthew T Weirauch!-2, Atina Cote!, Raquel Norel®, Matti Annala%, Yue Zhao®, Todd R Riley®, Julio Saez-Rodriguez’,
Thomas Cokelaer’, Anastasia Vedenko®, Shaheynoor Talukder!, DREAMS5 Consortium®, Harmen ] Bussemaker®,
Quaid D Morris»19, Martha L Bulyk®11:12, Gustavo Stolovitzky?, Timothy R Hughes!>10

Genomic analyses often involve scanning for potential transcription factor (TF) binding sites using models of the sequence
specificity of DNA binding proteins. Many approaches have been developed to model and learn a protein’s DNA-binding
specificity, but these methods have not been systematically compared. Here we applied 26 such approaches to in vitro protein
binding microarray data for 66 mouse TFs belonging to various families. For nine TFs, we also scored the resulting motif models
on in vivo data, and found that the best in vitro-derived motifs performed similarly to motifs derived from the in vivo data. Our
results indicate that|simple models based on mononucleotide position weight matrices trained by the best methods perfornj

similarly to more complex models for most TFs examined, but fall short in specific cases (<10% of the TFs examined here).

In addition, the best-performing motifs typically have relatively low information content, consistent with widespread degeneracy
in eukaryotic TF sequence preferences.

Weirauch et al., Nature Biotechnology (2013)



The Next Generation of Transcription Factor Binding Site
Prediction

Anthony Mathelier*, Wyeth W. Wasserman* PL0S Comput Biol 9, €1003214 (201 3)
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Markov Models (MMs)
model correlations among nucleotides

k'th order MM: probability depends on k previous nucleotides
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Markov Models (MMs)
model correlations among nucleotides

k'th order MM: probability depends on k previous nucleotides
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Markov Models (MMs)
model correlations among nucleotides

k'th order MM: probability depends on k previous nucleotides

Ot order,
J Pseudo-
counts
ATCGC?A e Pp(AIT) = #(TA)+1/ 1st order
Iy / #(T) +4
(A
co o A T C G T ce e pj(AlCT) — #(CTA) + 1 2nd Order

#(CT) + 4

For order k one needs ~100 x4**1 sequences (!)
to learn probabilities with 10% relative accuracy



Many higher-order models prune the
dependency graph and pool contexts

(1A

.+« AT[C|G[C|T|A] o<~
A 0.0307 0.2080 0.0147 0.1679 0.0005 0.9664 0.0214 0.0076 0.0002 0.9829 0.0278 0.0003 0.1435 0.1014
C 0.8782 0.0063 0.0147 0.8243 0.9985 0.0112 0.0214 0.0076 0.9994 0.0057 0.9166 0.9278 0.0017 0.0519
G 0.0307 0.4097 0.9559 0.0039 0.0005 0.0112 0.9357 0.0076 0.0002 0.0057 0.0278 0.0716 0.4274 0.3491
T 0.0604 0.3760 0.0147 0.0039 0.0005 0.0112 0.0214 0.9772 0.0002 0.0057 0.0278 0.0003 0.4274 0.4977

parsimonious
Markov model

Optimization requires comparing very many discrete tree topologies

= Slow and challenging to train (model comparison)
= Cannot discover motifs de-novo, require pre-aligned motif sequences

inhomogeneous variable-order Markov model




We use pseudocounts from lower-order!
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Siebert and Soding, NAR 2016



We use pseudocounts from lower-order!

If many counts for k-mer
= counts dominate over pseudocounts

= use maximum likelihood estimate

P 400 + 20 p(A
AITICIGIC|T[Af ==~ PAAIT) = 500 + 20 A N Pseudo-
j \ counts
el e pj(A|CT): 360 +60 x0.8
; \ 400+60
AT+ p(AIGCT) - 340 +m.9

350 -+ 180

Siebert and Soding, NAR 2016



We use pseudocounts from lower-order!

If few counts for k-mer
= pseudocounts dominate over counts
= fall back on lower-order estimate

O
oo ATCICITAI] »++  piClA) = —oi20 X024
] “ 200 + 20 Pseudo-
m — /counts
+oo [AT[CICT]A[c] -+ p(ClTA)= _2*060x0.250
; < 40+60
(A 1 1\2
«++ [AIT[c[c[T]Alc] ==+ P(CICTA) = +180 x 0.
10 +180

Bayesian Markov models only learn parameters for which
enough information exists to estimate accurately!

No need for optimizing discrete dependency trees.



5th order BaMMs learn binding motifs from
ChiP-seq better than PWMs

Increase of partial Area under ROC curve at 5% FPs (pAUC)
for each of 446 ENCODE ChlP-seq datasets (4-fold cross -validated)

pAUC fold increase (order 5)
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Gains of 5t order BaMMs over PWMs grow

when including flanking nucleotides
Increase of pAUC on 446 ENCODE ChlP-seq sets for +8bp-extended models
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5th order BaMMs achieve sizeable gains

even over 15t order BaMMs
Increase of pAUC on 446 ENCODE ChlP-seq sets for +8bp-extended models
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Some of the improvement could be due to
learning secondary motifs in higher orders
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Kif4 motifs trained on ChlIP-seq, tested on
EMSA affinities of mutated binding sites

single mutation from consensus
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Kif4 motifs trained on ChlIP-seq, tested on
EMSA affinities of mutated binding sites

single mutation from consensus
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FoxA2 motifs trained on ChIP-seq tested on
EMSA affinities of mutated binding sites
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Detecting fly narrow-peak TSSs

(CAGE data from Adelman lab)
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Detecting fly broad-peak TSSs

(CAGE data from Adelman lab)
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Pause sites In E. coli
(data from Landick lab)
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BaMMs are robust to overtraining

Core
promoters

Poly(A)
sites

Pause
sites
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RNA-binding sites from PAR-CLIP:
higher order vs. PWM

(data from Cramer lab, Goettingen)
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BaMMmotif server offers 4 tools

https://bammmotif.mpibpc.mpg.de
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How to assess motif models?

E-values / P-values for enrichment of motif
occurrences in input set vs. background set are

popular

But P-values can be very significant for motifs
without biological relevance, e.g. input set is large
and background set is not 100% realistic

We need a quality measure that informs us about
how well the model will identify binding sites in
unseen datasets

The demands on model specificity depend on the
expected ratio of positive to negative sequences!
E.g. ChlP-seq: ~1:1, scanning promoters: 1:100



How to assess motif models?

Number of motif occurrences

Use ROC-like analysis

TP _F\F__’_r—|_|_
FP | TN 1
input set sequences
background sequences
| | | | | |
0.0 0.2 0.4 0.6 0.8 1.0

P-value of motif occurrence




Partial ROC curve?

Relevant range of false positive rate (FPR) depends on
expected pos:neg ratio!

TPR=TP/ (TP + FN)
0.5

pAUC = 0.346

0 0.025 0.05
FPR =FP/ (FP + TN)



Precision-recall curve?
Relevant range of precision depends on expected pos:neg ratio!
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TP/FP ratio-recall curve!

« Covers entire relevant range of precision or FDR (log scale)

 Different ratios simply result in shifted curves
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Summary (main part)

Higher-order correlations significantly contribute to the
binding specificity of most transcription factors

Modeling higher correlations in a Bayesian framework can
significantly improve predictions on 97% of tested factors,
by +36% in pAUC on average. BUT: how much

improvements due to learning >1 model in ChIP-seq data?

BaMMs are very robust. They never overtrained
BaMMs excel in learning complex motif architectures
We should move from PWMs to higher-order models

BaMMmotif server at https://bammmotif.mpibpc.mpg.de
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