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D.melanogaster enhancers

We started to work
with regulatory
genomics in 1998

Dima Papatsenko
studied Drosophila
enhancers

he was interested in
TF binding sites



Our first collection of TFBS

total), Caudal (15), Ftz (25), Hunchback (43), Knirps (47),
Krüppel (21), and Tramtrak (7). We also narrowed down the
number of regulatory regions to 10, each containing at least
two of the seven types of sites: engrailed intron (enint; Kassis et
al. 1989; Florence et al. 1997), even-skipped stripe 2 (eve2;
Stanojevic et al. 1991; Small et al. 1992; Arnosti et al. 1996),
even-skipped stripe 3+7 (eve3+7; Small et al. 1996), fushi-tarazu
proximal enhancer (ftzprox; Han et al. 1993, 1998; Yu et al.
1999), hairy stripe 6 enhancer (hairy6; Langeland et al. 1994),
hairy stripe 7 enhancer (hairy7; La Rosee et al. 1997, 1999),
abdominal-A enhancer (iab2; Shimell et al. 2000), Krüppel re-
gion 730 (kr730; Hoch et al. 1991), spalt early enhancer (sal;
Kuhnlein et al. 1997; Barrio et al. 1999; de Celis et al. 1999),
and tailless enhancer (tll; Hoch et al. 1992; Liaw et al. 1995).

In the next stage, we built alignments (CLUSTALW,
LaserGene) for each type of selected BSTF and outlined a
well-defined core made of positions with a high informa-
tion content (see appendix 1.1 on the Web site). For each
type of site, a PWM was built from the core alignment. We
used PWMs that were not normalized for the average nucleo-
tide composition (set p! = 0.25 into formula 6 below) to avoid
any possible bias for base composition in a particular se-
quence.

Searches with these PWMs revealed not only the pres-
ence of the experimentally verified BSTF, but also multiple
high-scoring matches. Therefore, we generated two alterna-
tive types of BSTF maps for each regulatory region. The first
map, refined, contained only high-scoring PWM hits that co-
incided with the experimentally identified sites (footprints).
This map served to fix the length and the location of the
already-known binding sites. However, it is known that in
vitro analyses often reveal only the strongest binding sites
(Tronche et al. 1997). Therefore, we also developed a second
map, consistent, that was based on the relative PWM scores of
the found matches.

To determine the relevant PWM score cutoff, we calcu-
lated at each cutoff value the number of hits (H, number of
experimentally confirmed sites), the number of false-positive
sites (FP), and the number of false-negatives (FN, missing but
experimentally confirmed sites) between the refined and the
resulting consistent map. This procedure was performed in-
dependently for each type of BSTF considered. To give more
weight to the experimentally verified BSTFs in the consistent
map, we added more penalties to FN than to FP. We built our
penalty function by modifying the likelihood ratio criterion
(see appendix 1.2 on the Web site)

P!cutoff" = Ln!!H"*!H"#!H + FN""#Ln!FN + FP" (1)

We considered the PWM cutoff to be optimal at the
maximum of the given function (see appendix 1.2, Krüppel).

Possible experimental errors, as well as the specificity of
our descriptions (alignments, PWM), probably cause the dis-
agreements found between the refined and the consistent
maps built. An example of comparison between these maps is
shown in Table 1. We consider our consistent maps (see ap-
pendix 1.3 on the Web site) as the closest approximation to
the distribution of true BSTF. However, it is unlikely that one
should expect a better agreement between the Scanseq pre-
diction and one of the two maps than between the two maps
themselves.

Formulation of the Scanseq Algorithm
We based our Scanseq algorithm on the assumption that
each word recognized by a given transcription factor (BSTF)
belongs to its own family of similar words (binding-site motif)
found in the same enhancer sequence. Scanseq (Fig. 2) ex-
tracts statistically significant motifs from a single sequence
and generates a map of potential binding sites for this se-
quence. The algorithm features special statistics for account-

ing for word overlaps in the same
DNA strand and for correlating
word overlaps in the complemen-
tary strands of DNA (see Methods
and appendix 2.2 on the Web site).

The Scanseq algorithm in-
cludes the following basic stages. In
the first step, a search is performed
with each m-letter word in the se-
quence (the seed word) for all simi-
lar words with no more than k mis-
matches. The resulting word family
forms the initial motif for each
seeded word. In the second step,
the search is performed with the
PWM constructed for each of the
initial motifs. This matrix is nor-
malized for the average sequence
composition and uses pseudo-
counts to cope with small-sampling
problem. In the third step, the algo-
rithm calculates the expectation
and the variance for the number of
occurrences in the random se-
quence for the double-stranded
DNA. The Z score of the refined mo-
tif is assigned to each correspond-
ing initial seed word. In most cases,
the characteristic length of the po-

Table 1. Comparison between the Refined and Consistent Maps

Distribution of sites shown for the even-skipped strip 2 region. Most of the experimentally verified
binding sites shown are shared between the two maps (hits, shown in red). Two known Bicoid sites
false-negatives in blue) are missing in the consistent map due to their low positional weight matrix
score. In vitro binding assays support the suggestion of low affinity for these two Bicoid sites (Wilson et
al. 1996). High-scoring matches (false-positives) to Bicoid, Krüppel, and Giant are shown in green.

Papatsenko et al.
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A site verified by at least two
methods from footprints,
mutant, or highly conserved
blocks

Bicoid (34 sites), Caudal
(15), Ftz (25), Hunchback
(43), Knirps (47), Kruppel
(21), and Tramtrak (7)

Aligned with CLUSTALW and
manually and cut the flanks



Aligning footprints with genome mapping

=1 п.н.

2008

Mapping footprints on the genome allows
recovering up to 40

Usually it is enough to add only two
letters

Genome data may be very useful for
interpretation in vitro results

http://autosome.ru/dmmpmm/
DMMPMM collection

Ivan Kulakovskiy



TRANSFAC appears!



Nice Sp1 model for studying CpG islands

Sp1 JASPAR 2007
(SELEX data)

Sp1 Remapped and realigned
TRANSFAC 2008



Chip-on-chip data

Chip-on-chip yielded
long regions (up to
20K)

Wasn’t suitable for
motif discovery

But perhaps could
be helped with in
vitro data



Integrative motif discovery: early ChIPmunk

Subsampling on many sets of sequences then optimization on
total set of weighted sequencies



Chip-seq data



ChIPmunk page

Peak shape and motif shape prior (like double box)
available at http://autosome.ru/ChIPMunk/



TRANSFAC comes into view again

... and supplies us with a new version of SITE
database (for free)



Core workflow (2011), with Vlad Bajic from KAUST



Discovery strategies usually agree!



Human curation



Some notes on PWMs

PWM can be used to calculate a
score for any sequence

Score[j ] =
j+L−1∑

j
PWM[j , s(j)]

s(j) is the letter in the position j of
the alignment of PWM with the
sequence

L is the PWM length



PWM and the scoring threshold as a binary classifier

Each pair ( PWM , threshold ) classifies any word as a motif hit
(YES/NO)



Fast exact calculation of motif P-vlaue

Suppose there is a probability distribution upon the l-words
Motif P-value is the sum of probabilities of all words scoring
above the threshold
In 2007 Hélèn Touzet and Jean Stéfan Varré designed nice
precise algorithm



Motfs can be compared as clussifiers
i.e. pairs ( PWM, threshold )

One needs to set both thresholds
... but after that it is possible to calculate the percentage of
common words recognized by both motfs
and compare it with a larger set of words recognized by any of
them
Matrices of different origine (or even PWM and PCM) can be
compared without additional normalization



MacroApe to compare motifs

We modified Touzet - Varré algorithm to compare PMWs
Available at http://opera.autosome.ru/macroape
Can be used to extract motifs from various motif databases



Measuring performance with AU ROC

We can use theoretically calculated P-values for a false-positive
rate
This allows us to compare performance of different motifs on the
same benchmark datasets



Hocomoco database log

2011 first website published

2012, first publication, v.9, Nucleic acids research, database
2013

2015, second publication, v.10, Nucleic acids research,
database, 2016

2017, third publication, v.11, Nucleic acids research, database
2018

http://hocomoco11.autosome.ru/

http://www.cbrc.kaust.edu.sa/hocomoco11



Extension from HT-SELEX data (v.10)

large number of HT-SELEX
data and new ChIP-seq data
allowed us to extend the
core base only by
benchmarking and curation



Curation of extantion v.10

similar to known models (0.05 Jaccard similarity)

consistent within a TF family, TFclass families are taken

or at least with a clearly exhibited consensus (based on LOGO
representation, manually assessed).



Extension from GTRD ChIP-seq database

Gather as many datasets as possible

Motif discovery in all datasets

Benchmarking and conservative filtering



Machine dataset filtering v.11

Cross-validation based
dataset filtering

If known motif performs
better than the genuine
dataset motif the entire
dataset is discarded



Dinucleotide models



Many motifs are very similar

Figure: ETC family

Difficulties for MARA style analysis. SwissRegulon contains small
number of ”isolated” motifs



Motif classes correspond to structural classes of TFs

Adapted from TFclass database, Wingender et al., 2015



http://www.cbrc.kaust.edu.sa/hocomoco11
http://hocomoco.autosome.ru



v.11 Hocomoco statistics

models for 453 mouse and 680 human transcription factors

contains 1302 mononucleotide and 576 dinucleotide PWMs

build from more than 3000 ChIP-seq tracks and four peak
callers



What one needs motifs for ?

Mike Visser et al. Genome Research, 2012; 22:446-455



No experimental location of TFBS

method in vitro native or segment # segments comment
in vivo synthetic length

ChIP in vivo native 40 (exo) 150 - indirect
5000 50000 binding

One-hybrid in vivo synthetic ∼30 20-50 in bacteria

SELEX, RSS in vitro synthetic ∼20 20-50 saturation

HT-SELEX in vitro synthetic ∼50 5000 saturation

PBA in vitro synthetic ∼50 10000 overlapping

Footprints either native ∼100 20 - 10000 indirect

Table: Experimental methods of TF binding identification



Limitations for using motifs to explain eQTLs

From Levo and Segal, 2014,
Nat Rev Genet

Because many other processes
(mostly chromatin related)
contribute to the protein
positioning at the genome



who cite HOCOMOCO (References on 2016 paper, 63
total for Jan. 2018)

Functional genomics (genome structure, annotation, etc) 15
Genetics: annotation of loci and rSNP 13
Systems biology (regulatory networks from DE data) 10
Algorithms and Machine learning assisted genome annotation 7
”Stories” about particular promoters etc 7
DNA - protein interaction studies 6
TF studies - databases, structure of DNA recognition motifs etc 4
Genetic engineering - prediction of genemics manipulation 2
General Molecular biology (transctiption initiation etc) 1



Autosome.RU software family + Hocomoco database
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