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Computational Identification of Key Regulators in Two
Different Colorectal Cancer Cell Lines
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Transcription factors (TFs) are gene regulatory proteins that are essential for an effective regulation of the transcriptional
machinery. Today, it is known that their expression plays an important role in several types of cancer. Computational identification
of key players in specific cancer cell lines is still an open challenge in cancer research. In this study, we present a systematic
approach which combines colorectal cancer (CRC) cell lines, namely 1638N-T1 and CMT-93, and well-established computational
methods in order to compare these cell lines on the level of transcriptional regulation as well as on a pathway level, i.e., the cancer
cell-intrinsic pathway repertoire. For this purpose, we firstly applied the Trinity platform to detect signature genes, and then
applied analyses of the geneXplain platform to these for detection of upstream transcriptional regulators and their regulatory
networks. We created a CRC-specific position weight matrix (PWM) library based on the TRANSFAC database (release 2014.1) to
minimize the rate of false predictions in the promoter analyses. Using our proposed workflow, we specifically focused on revealing
the similarities and differences in transcriptional regulation between the two CRC cell lines, and report a number of well-known,
cancer-associated TFs with significantly enriched binding sites in the promoter regions of the signature genes. We show that,
although the signature genes of both cell lines show no overlap, they may still be regulated by common TFs in CRC. Based on our
findings, we suggest that canonical Wnt signaling is activated in 1638N-T1, but inhibited in CMT-g3 through cross-talks of Wnt
signaling with the VDR signaling pathway and/or LXR-related pathways. Furthermore, our findings provide indication of several
master regulators being present such as MLK3 and Mapk: (ERK2) which might be important in cell proliferation, migration, and
invasion of 1638N-T1 and CMT-93, respectively. Taken together, we provide new insights into the invasive potential of these cell
lines, which can be used for development of effective cancer therapy.
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Follow-up analyses: APC vs CMT-93

Colorectal cancer cell lines:
1638N-T1 vs. CMT-93
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Pathway model: APC vs CMT-93
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Pathway modeling: How can | improve my model?
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A novel information theory-based method:

GeneSpiker

» Concept: Refine the input data set (DEG list) by identifying the most
significantly differentially regulated genes (DRGSs)

» Main steps:

1. MATCH™ analysis and construction of a transposed TFBS-
sequence matrix with affinity-scaled frequency scores

2. Quantification of differences between the distribution of scores
using the Jensen-Shannon divergence (JSD)

3. Identification of statistically significant JSD-values
4. Definition of DRGs




1. Construction of a transposed TFBS-sequence matrix

® MATCH™ analysis with TRANSFAC® PWMs
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1. Construction of a transposed TFBS-sequence matrix
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1. Construction of a transposed TFBS-sequence matrix
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1. Construction of a transposed TFBS-sequence matrix

- LetS.(i=1,...,m)be asequence
o Let t (j=1,...,n)be aTFBS predicted using PWM j where n is the PWM library size

' TSS
Qo _
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1. Construction of a transposed TFBS-sequence matrix

Gene1
Gene2

Gene3

Concrete example: Matrix M

PWM1 PWM2 PWM3 PWM4 PWMS PWM6 PWM7 PWM8 PWM9 PWM10
834 677 1621 886 2234 779 1657 965 965 1169
4564 6434 5465 3233 7875 9655 8546 6666 8654 4888
1621 688 897 1924 966 743 1054 1677 678 767
f transpose
Gene1 Gene2  Gene3
PWM1 834 4564 1621
PWM2 677 6434 688
PWM3 1621 5465 897
PWM4 886 3233 1924
PWMS5 2234 7875 966
PWM6 779 9655 743
PWM7 1657 8546 1054
PWMS8 965 6666 1677
PWM9 965 8654 678
PWM10 1169 4888 767




2. Quantification of differences between the binding site
distribution of TFs using the Jensen-Shannon divergence (JSD)

PWM1
PWM2
PWM3
PWM4
PWM5
PWM6
PWM7
PWM8
PWM9

PWM10

Matrix M
S @ Apply JSD metric to every column pair (k,I) in M
834 4564 1621 Dk + p ’ 1
k !
677 | 6434 | 688 JSD(k||l) = H( 5 ) = 5H () = 5H(p)
1621 5465 897 : o :
@ Determine significant JSD values between column pairs
886 3233 1924
2234 7875 966
Q ' ' :
279 9655 243 An entropy is a measure of the average uncertainty of an outcome
@ Let X be a discrete random variable with probabilities p(x;), i = 1,...,n
1657 8546 1054 ) :
= The Shannon entropy is defined by
965 6666 1677
H(X)=— Xi)lo Xi
ot oo T os (X) Zp( ) log; p(x)
169 | 4588 rer @ H(X) > 0 entropy is always non-negative
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2. Quantification of differences between the binding site
distribution of TFs using the Jensen-Shannon divergence (JSD)
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3. Identification of statistically significant JSD-values

® Application of the Jensen-Shannon divergence (JSD) results in

M JSD(t,,ty)-values

,where n = number of genes

® Identification of significant JSD values (JSD%)

p-values of Gz distributed JSD-values
p-values of G distributed JSD-values

-walues of Fa distributed JSD-vaiues
= I Iinnnn il
. A Alilnnnnnnil |

0,05 01 0,45 02 026 03 035 04 046 0,6 0,65 06 0656 07 0,75 04 0,86 09 085 1

p-values of JSD-values

Figure 2 p-value distribution of JS[I-values. The p-values close to zero represent the significant
JED-values between column pairs by means of which we assess the importance of individual TFs
in the gene set. As one can see, p-values are approximately uniformly distributed within [0.2,0.80].

Coupled Mutation Finder: A new entropy-based method quantifying phylogenetic noise for the detection of compensatory mutations
BMC Bioinformatics (11 September 2012), 225, doi:10.1186/1471-2105-13-225
by Mehmet Gultas, Martin Haubrock, Nesrin Tuysuz, Stephan Waack




4. Definition of DRGs

Matrix M

Gene1 Gene?2 Gene3

@ Apply JSD metric to every column pair (k,l) in M

PWM1 | 834 | 4564 | 1621 ot p 1 1
'k |
PWM2 = 677 | 6434 688 JSD(k||I) = H( > ) — EH(Pk) — EH(PI)

PWM3 1621 5465 897

@ Determine significant JSD values between column pairs

PWM4 886 3233 1924

PWM5 2234 7875 966

@ An entropyis am re of the aver ncertainty of an me.
PWM6 779 9655 743 entropy is a measure of the average uncertainty of an outcome

@ Let X be a discrete random variable with probabilities p(x;), i = 1,...,n
= The Shannon entropy is defined by

H(X) = = >_ p(x) log, p(x)

PWM7 1657 8546 1054

PWM8 965 6666 1677

PWM9 965 8654 678

PWM10 1169 4888 767

@ H(X) > 0 entropy is always non-negative

Gene2 exhibits the most different distribution of affinity-scaled frequency scores of the three genes

Gene2 is the most (significantly) differentially regulated gene (DRG)
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Abstract

The molecular causes by which the epidermal growth factor receptor tyrosine kinase induces
malignant transformation are largely unknown. To better understand EGFs' transforming
capacity whole genome scans were applied to a transgenic mouse model of liver cancer and
subjected to advanced methods of computational analysis to construct de novo gene regulatory
networks based on a combination of sequence analysis and entrained graph-topological
algorithms. Here we identified transcription factors, processes, key nodes and molecules to
connect as yet unknown interacting partners at the level of protein-DNA interaction. Many of
those could be confirmed by electromobility band shift assay at recognition sites of gene
specific promoters and by western blotting of nuclear proteins. A novel cellular regulatory
circuitry could therefore be proposed that connects cell cycle regulated genes with components
of the EGF signaling pathway. Promoter analysis of differentially expressed genes suggested
the majority of regulated transcription factors to display specificity to either the pre-tumor or the
tumor state. Subsequent search for signal transduction key nodes upstream of the identified
transcription factors and their targets suggested the insulin-like growth factor pathway to render
the tumor cells independent of EGF receptor activity. Notably, expression of IGF2 in addition to
many components of this pathway was highly upregulated in tumors. Together, we propose a
switch in autocrine signaling to foster tumor growth that was initially triggered by EGF and
demonstrate the knowledge gain form promoter analysis combined with upstream key node
identification.



Epidermal Growth Factor induced Carcinogenicity
Philip Stegmaier’, Alexander Kel’, Edgar Wingender'-2, and Jirgen Borlak3

Hepatocellular transcriptome data of IgEGF-overexpressing mice
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Alexander Kel, 2012. “Walking pathways” and how promoters can help to find new drugs. www.nettab.org/2012/slides/Kel.pdf



“"Walking pathways” and how
promoters can help to find new

drugs.

(Practical guide to multi-omics and multi-

scale data integration)

Alexander Kel

gene Xplain Biosoft.ru, Skolkovo
Wolfenbiittel Moscow -,....‘?.‘f.‘??f’?‘??‘???TE’L;-.

alexander.kel@genexplain.com Novosibirsk

Alexander Kel, 2012. “Walking pathways” and how promoters can help to find new drugs. www.nettab.org/2012/slides/Kel.pdf
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Cell proliferation

Alexander Kel, 2012. “Walking pathways” and how promoters can help to find new drugs. www.nettab.org/2012/slides/Kel.pdf



CAV1expression can lead to an inhibition of cancer-related pathways

Cell uroliferction

Alexander Kel, 2012. “Walking pathways” and how promoters can help to find new drugs. www.nettab.org/2012/slides/Kel.pdf



IGFBP-6

Calveolin-1

Alexander Kel, 2012. “Walking pathways” and how promoters can help to find new drugs. www.nettab.org/2012/slides/Kel.pdf
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Paper: EGF Mouse Model of Liver Cancer
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Figure 2. Expression responses of known liver carcinoma/neoplasia biomarkers in EGF-induced carcinogenicity.

Stegmaier, P, Voss, N, Meier, T, Kel, A, Wingender, E, Borlak, J (2011). Advanced computational biology methods identify molecular
switches for malignancy in an EGF mouse model of liver cancer. PLoS ONE, 6, 3:e17738.



Paper: EGF Mouse Model of Liver Cancer
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Figure 8. Merged key node networks of EGF and IGF-2 cascades with transcription factors revealed by promoter analysis.

Stegmaier, P, Voss, N, Meier, T, Kel, A, Wingender, E, Borlak, J (2011). Advanced computational biology methods identify molecular
switches for malignancy in an EGF mouse model of liver cancer. PLoS ONE, 6, 3:e17738.
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Pathway modeling
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GeneSpiker-significant DRGs

Transgenic: top 20 DRGs Tumor: top 20 DRGs
NM_ 001282943 Ccne2 192 NM_ 016768 Pbx3 280
NM_001098203_Hic1 174 NM_ 001282943 Ccne2 257
NM_001111336_Hsd3b4 152 NM_009523 Wnt4 228
—»NM_007872_Dnmt3a 152 ™ NM_010514_Igf2 220
NM_001289920 E2f3 141 NM_001289920 E2f3 209
NM_008005_Fgf18 138 NR 028441 Vmn2r-ps60 191
NM_011693 Vcam1 135 NM_010111_Efnb2 184
NM_008680 Enah 132 NM_011146_Pparg 183
NR_ 028441 Vmn2r-ps60 127 NM_010637_KIf4 178
NM_010111_Efnb2 127 NM_009331_Tcf7 178
NM_001146087_1I1f5 118 NM_009072_Rock2 168
NM_017480 Icos 112 NM_011604_TIr6 168
NM_ 145515 Mark1 112 NM_033075 D17HGSS6E-5 165
NM 010151 Nr2f1* 104 NM_007423_Afp 159
NM_033075_D17HGS56E-5 99 —» NM_001122737_Igf2 158
NM_ 011388 _Slc10a2 98 NM_008605 Mmp12 146
NM_001110783_Ank1 97 NM_001290637_Dab2ip 142
NM_ 008221 Hbb-y 96 NM_001198833_Ddr1 137
NM_010437_Hivep2 96 NM_009731_Akri1b7 132
NM_009697 Nr2f2* 95 NM_ 198622 H1fx 132

*COUP-TF1/COUP-TF2



Master regulators analysis based on
GeneSpiker-significant DRG

Find master regulators in networks

10 steps upstream search in TRANSPATH
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Conclusion

) Success of your follow-up analyses such as GSEA, TRANSPATH® pathway
analysis, TFBS enrichment (F-MATCH) analysis, Master regulator analysis etc.
can be enhanced by using more refined input lists (e.g. DEGs)

) GeneSpiker is a novel method for the identification of the most significantly
differentially regulated genes (DRG)

—Qutput: a filtered (refined) and ranked gene list
) GeneSpiker can identify biomarkers of early/late cancer stage

) GeneSpiker in combination with follow-up analyses results in more specific
pathway models
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