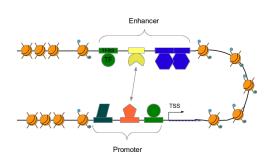
Identification of associated transcription factors in promoters and their related enhancer regions

Cornelia Meckbach

Institute of Bioinformatics


March 8, 2018

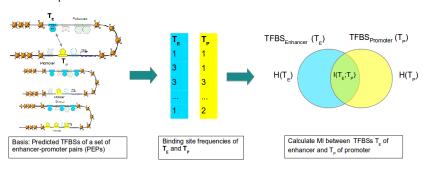
Motivation

- Transcription factors (TFs) on paired enhancer and promoter regions are associated if they are involved in the pairing process.
- ⇒ Identification of associated TFs on enhancer and related promoter regions based on their transcription factor binding sites (TFBSs).

Inspired by:

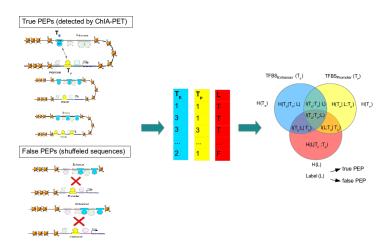
Wong, KC (2017). MotifHyades: expectation maximization for de novo DNA motif pair discovery on paired sequences. Bioinformatics.

Mutual information



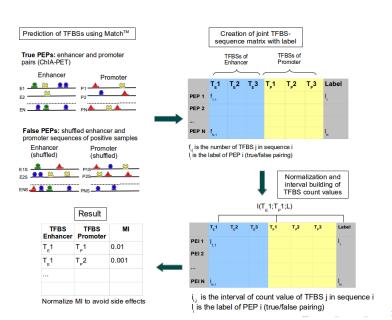
- Identification of associated TFs of promoter-enhancer pairings (PEPs) using mutual information (MI)
- ightarrow Two TFs are associated with each other if their binding behavior is in dependence of each other.

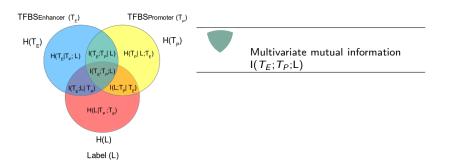
Mutual information



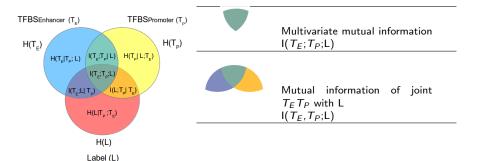
- Consider a set of experimentally validated PEPs for a cell line (e.g. by ChIA-PET)
 - Predict all TFBSs of the underlying sequences
 - Calculate MI for a TFBS pair T_E and T_P

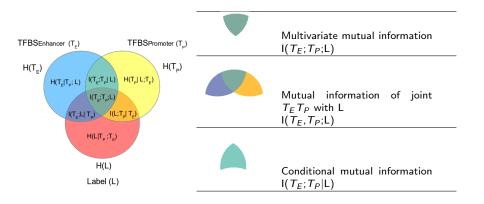
Multivariate mutual information

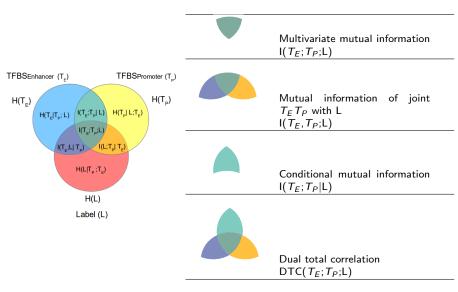


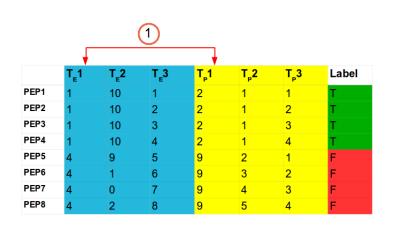

• How much information contains TFBS T_E about T_P by considering the interaction type (label).

Workflow





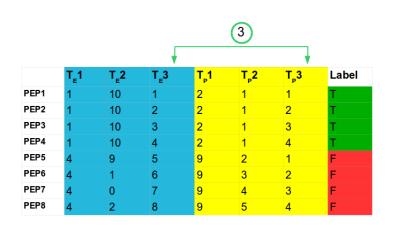




	TFBSs of Enhancer				TFBSs of Promoter		
	T _E 1	T _E 2	T _E 3	T _P 1	T _P 2	T _P 3	Label
PEP1	1	10	1	2	1	1	Т
PEP2	1	10	2	2	1	2	Т
PEP3	1	10	3	2	1	3	Т
PEP4	1	10	4	2	1	4	Т
PEP5	4	9	5	9	2	1	F
PEP6	4	1	6	9	3	2	F
PEP7	4	0	7	9	4	3	F
PEP8	4	2	8	9	5	4	F

- Synthetic TFBS-sequence matrix: An entry f_{ij} in the matrix is the frequency of TFBS T_i in sequence i.
- One row corresponds to a PEP
- The label column indicates the pairing type (true/false pair)

Perfect associated TFBS pair



2							
					\		
	T _E 1	T _E 2	T _E 3	T _p 1	T _P 2	T _P 3	Label
PEP1	1	10	1	2	1	1	Т
PEP2	1	10	2	2	1	2	Т
PEP3	1	10	3	2	1	3	Т
PEP4	1	10	4	2	1	4	Т
PEP5	4	9	5	9	2	1	F
PEP6	4	1	6	9	3	2	F
PEP7	4	0	7	9	4	3	F
PEP8	4	2	8	9	5	4	F

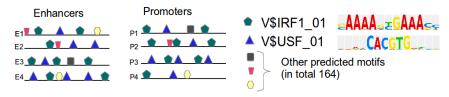
- 1 Perfect associated TFBS pair
- Associated TFBS pair in true PEPs

- Perfect associated TFBS pair
- ② Associated TFBS pair in true PEPs
- (3) Non-associated TFBS pair

Synthetic example I :Result

					_		
	₹		•	_	•	. ♦	
	T _e 1	T _E 2	T _E 3	T _p 1	T _p 2	T _p 3	Label
PEP1	1	10	1	2	1	1	P
PEP2	1	10	2	2	1	2	P
PEP3	1	10	3	2	1	3	P
PEP4	1	10	4	2	1	4	P
PEP5	4	9	5	9	2	1	N
PEP6	4	1	6	9	3	2	N
PEP7	4	0	7	9	4	3	N
PEP8	4	2	8	9	5	4	N

- 1 Perfect associated TFBS pair
- (2) Associated TFBS pair in true PEPs
- 3 Non-associated TFBS pair


Table: Results for different measures for synthetic example I.

		•			
TFBS of	TFBS of	$I(T_E;T_P;L)$	$I(T_E,T_P;L)$	$I(T_E;T_P L)$	$DTC(T_E, T_P, L)$
enhancer	promoter				
$T_E 1$	$T_P 1$	1.0	1.0	0	1.0
$T_E 2$	T_P2	0.43	0.43	0.43	0.86
<i>T_E</i> 3	T_P3	0	0.33	0.66	1.0

 Use a given library of 166 PWMs to predict potential TFBSs in the sequences

- **True PEPs:** TFBSs V\$IRF1_01 and V\$USF_01 are randomly inserted 1 to 10 times in enhancer and promoter sequences
- False PEPs: Shuffled enhancer and promoter sequences

Synthetic example II: Results

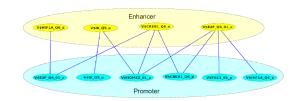

- In total there are 27556 TFBS pairs
- → Ranks of the inserted pairs?

Table: Ranking position of the inserted pairs.

		•			
TFBS of	TFBS of	$I(T_E;T_P;L)$	$I(T_E,T_P;L)$	$I(T_E;T_P L)$	$DTC(T_E, T_P, L)$
enhancer	promoter				
V\$IRF1_01	V\$USF_01	1	160	5563	125
V\$IRF1_01	V\$IRF1_01	2	161	6848	215
V\$USF_01	V\$IRF1_01	3	408	4309	60
V\$USF_01	V\$USF_01	4	396	3524	23

Biolog. application: K562 cell line

(T_E)	Logoplot of enhancer motif	(T_P)	Logoplot for promoter motif	I(1 _E ;1 _P ;L)
V\$E2F_Q6_01	seCGC=AAA	V\$CREB1_Q6	acGTCA_	0.0144
V\$CREB1_Q6	acGTCA_	V\$CREB1_Q6_01	acGTCA	0.0122
V\$CREB1_Q6	acGTCA_	V\$CREB1_Q6	acGTCA_	0.0115
V\$E2F_Q6_01	scCGC=AAA	V\$HOMEZ_01	ATCGTTT	0.0098
V\$IK_Q5	TGGGAG=	V\$IK_Q5	TGGGA G⊊	0.0095
V\$IK_Q5	TGGGAG=	V\$HOMEZ_01	~_~~ATCGTTT	0.0094
V\$E2F_Q6_01	scCGC=AAA	V\$FAC1_01	A_AA_A	0.0087
V\$E2F_Q6_01	seCGC=AAA_	V\$HIF1A_Q6	_CACG ₊	0.0084
V\$CREB1_Q6	acGTCA_	V\$HOMEZ_01	A_AA_ATCGITI	0.0081
V\$HIF1A_Q6	_CACG _±	V\$E2F_Q6_01	CCGC_AAA	0.0075
			←□ → ←□ → ← ≥ → ← ≥	

Summary

- Workflow to detect associated TFs on enhancer and promoter regions based on their binding sites
- Compared four different information theoretic measures on synthetic data sets
- Multivariate mutual information I(T_E; T_P;L) performs best on both sets

Thanks

People

Edgar Wingender Mehmet Gültas Martin Haubrock Sebastian Zeidler Jürgen Dönitz Rayan Daou Darius Wlochowitz Halima Alachram Doris Waldmann Torsten Schöps Malte Sahrhage

